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LE’lTER TO THE EDITOR 

Definite integrals as solutions for the x2+A.x2/(1+gx2) 
potential 

George P Flessas 
Department of Natural Philosophy, University of Glasgow, Glasgow G12 8QQ, Scotland 

Received 20 October 1981 

Abstract. We present exact solutions and eigenvalues for the Schriidinger equation with the 
x2 + Ax2/(1 + gx2) interaction on the half axis x 3 0. The solutions are given in the form of 
definite integrals and the eigenvalues by means of a well defined limiting procedure. 

We consider the Schrodinger equation 

Y”(x) +[E - x Z  -Ax2/(1 + gxZ)]y(x) = O  o s x s ~ , g > o  (1) 
which appears in various fields as summarised by Bessis and Bessis (1980) and Mitra 
(1978). Our aim is to continue the investigation started in an earlier paper (Flessas 
1981) and find further rigorous eigenfunctions and eigenvalues E for equation (1). 
Using 

y(x) = exp(-$t)h(t) (2) 2 x = t  

we deduce from equation (1) 

4 t ( l+  gt)h”(t)+ [-4gtZ +2t(g -2) +2]h‘(t)+ [E - 1 + t(Eg - A  - g)]h(t) = 0. (3) 
In contrast to Flessas (1981) where polynomial-type solutions for equation (3) were 
found here we make the ansatz 

m 

h ( t )  = lo exp(-&zt)f(z) dz t > O .  (4) 

Under the assumption, which is going to be justified later, that the integral in equation 
(4) exists we can build h’(t) ,  h”(t)  and insert them into equation (3). After some algebra 
we obtain the following equations that have yet to be fulfilled: 

(5) z ( z  + 2)f’(z) + [E+ * z( 7g+2 -) + E + 7  ,--]f(z) A 
+ ( 3 z + 6 g + 3 + E  

g 2g 2g 4g 
F(m) -F(O) = 0 

+ 4gztf(z) + 8gzfYz) + 4zfb)  + 26% - A  )f(z) + 6gf(z)1. 

F ( Z )  = exp(-4tz)[2zZf(z)+2tgz2f(z) +6gzf(z)+4gzz~(z) (6) 

Equation (6) comes from the integrated part of the integrals inserted into equation (3). 
Our next task consists in satisfying equations (5)-(6). We consider first equation (5). 

Such a type of differential equation, which also appears in the calculation of the possible 
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energies of the ion of molecular hydrogen in the framework o€ Sciuiidinger's theory, has 
been investigated by Wilson (1928). Equation (9, however, is somewhat more general 
than that of Wilson (1928). Nevertheless we can use some of the results of that work by 
imposing, as follows by comparing the two differential equations in question, on E, A ,  g 
the condition 

E g  = A .  (7) 

Then the solution of equation ( 5 )  reads, as can be easily verified, 

f(z) = f C m ( Z  +2)-m-3/2 (8) 
m=O 

amcm + bm-icm-l + dm-2cm-2 = 0 m 3 0 ,  c - ~  = c-2 = 0, co= 1 

E - 1 + 2 g  1 a, = -m/2g, bm-l = m(m - $ + g - ' ) +  dm-2 = -2(m -r)(m --:I. (9) 
4g 

The power series in equation (8) converges for O<r CCD. The second linearly 
independent solution is physically unacceptable on the grounds of its behaviour for 
z + 00. Further it can be shown (Wilson 1928), as it is usually done by studying cm/cm-l 
for m + 00, that for z -* 0, f ( z )  becomes 

(10) f(z) = A(z + 2)-3/4z-3/4 A =A(E, g), z + O  

and also f(z) - 0. Hence the existence of the integral in equation (4) is ensured. 

Now for the investigation of equation (6) we shall need the lim,,of'(z). To this end we 
note that the differentiation of equation (8) for z E (O,CD] is permitted: 

r-rm 

To find the behaviour of the s u m  in equation (1 1) for z + 0 we remark that by virtue of 
equation (9) it can be seen (Wilson 1928) that (cm/cm-1)+2 as m +OO. We set 
ck/ck-l = 2(1- u / m )  for m very large, and by utilising equation (9) we get by equating 
powers of m that U = -$ Therefore for large m values CL approximates the cor- 
responding coefficient of w m in the binomial series 

1 w=- (-$)(I - $1 . . . [-(m - 1) - $1 
(1 -2w)-7/4 = 1 + c (-2w)" 

m = l  m! 2 + 2  

and consequently the s u m  in equation (1 1) becomes for z + 0 equal to the expression 
B(z +2)7/4z-7/4, B =B(E,  g).  So from equation (11) we obtain 

f ( z )  = +2)-7/42-3/4-B(Z +2)-3/42-7/4 z +o. (12) 

We examine now equation (6). Owing to equations (7), (10) and (12) we observe 

z + o  

that condition (6) holds provided 

6gf(z) + 8gzf'(z)  = 0 

or, equivalently, 

A -4BI3 = 0. 
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To fulfil equation (13) it is sufficient to require 

A = l  - 4. (14) 

Equation (14) implies that f ( ~ ) ( t + 2 ) ~ / '  and the sum in equation (11) become, 
respectively, for z + 0 identical with (1 - 2 w ) - ~ ' ~  (cf equation (10)) and 3(1- 2 ~ ) - " ~ / 4 .  
In other words c, and ch satisfy 

B - 9  

Using the standard formula from the gamma function theory r ( a  + m) = 
a(a + 1) . . . (a + m - l)r(a) it can be verified that, as expected, the two relations in 
equation (15) are the same. Thus we need only consider one of them, say the second 
one. Then by writing down first the closed form for ch, which follows from equation (9), 

D,  = 

. . .  0 

. . .  0 

. . .  

' -bm-* (-l),am-, 
(- l)"dm-2 -bm - 1  

D m  = - b m - l D m - 1 - d m - ~ ~ m - 1 D m - 2 ,  D1 =-bo,  D2=bobl-aldo 

we deduce for the second of the conditions (15) 

m 2 3  

mgmD, = (!)(-f)(-l  - f )  . . . [-(m - 1)-$1 m+co.  (17) 

Condition (17) is exact. To determine the energy eigenvalues E(g)  from it we have to 
use the asymptotic expressions for D,  and (-:). . .[-(m - 1) -$I. Then m will cancel, 
as otherwise ck would not approximate the corresponding coefficient in (1 - 2 ~ ) - ' / ~  as 
shown prior to equation (12). As a consequence we shall obtain an exact relation 
R(E, g) = 0 from which E(g)  can be calculated. We note, however, that both sides of 
equation (17) are very rapidly increasing functions of m (they increase practically 
stronger than m!), Hence for moderate m values they will approximately attain their 
asymptotic forms and as a result we can obtain a condition connecting E and g which is 
an approximation to the exact R(E, g) = 0. It is straightforward to demonstrate the 
foregoing for somewhat large g values. We choose g = 100. Then for m = 2, 3, 4 
equation (17) gives, respectively, the following approximations to the exact E: E"' = 
-610, E'" = -668, E'4' = -620. These numbers suggest a relatively rapid convergence 
of the procedure with the energy lying between -610 and -668. The corresponding A 
is found from equation (7). As in Flessas (1981) our method includes A < 0, whereas the 
numerical approaches of Bessis and Bessis (1980) and Mitra (1978) are readily 
applicable only for A + 1 > 0. 
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We have yet to accommodate for the w e  t = 0 which was excluded in equation (4). 
This was so because if t = 0 the term z2f(z) in equation (6), f(z) -given by equation 
(8), causes F(co) + OD. Thus although the integral in equation (4) sti l l  exists for t = 0, it is 
not a solution of equation (3) for t = 0. To include now t = 0 in our method we have to 
m d i y  slightly the potential V ( x )  = x 2  + A x 2 / (  1 + gx')  in equation (1) without changing 
the physically important eigenvalue E as calculated above. This can be done by 
considering the modified interaction 

E being an arbitrarily small positive number. Then for O s x  S E  y ( x ) =  
aexp(iE'/2x)+Pexp(- iE1/2x) ,  where E is given by equation (17) and a, p are 
determined from the usual continuity conditions at x = E .  Since V ( x )  is a well behaved 
function for x -+ 0, we can choose the E > 0 as small as we like without altering the 
physical situation which corresponds to keeping the V ( x )  for x P 0. As a consequence 
we have the eigenparameter E determined by equation (17) for all x PO and y ( x )  
defined by equations (2)-(4) valid for all x > 0. 

We recall that the series defining f ( z )  in equation (8) diverges for z = 0 and 
therefore, although the integrals appearing after inserting equation (8) into equation (4) 
are known (Gradshteyn and Ryzhik 1965), one must examine the convergence of the 
integration result for 0 C t s 00. We obtain 

(19) 1 t m  
m =O 2" 

where r(u, U) is the incomplete gamma function. By applying the standard criterion for 
the convergence of series we readily see that the series in equation (19) diverges for all 
t > 0. This shows that term-by-term integration in equation (4) is not permitted. 

The difference between the present work and that of Flessas (1981) lies in the 
following. The structure of equation ( 5 )  reveals that it cannot possess polynomial-like 
solutions (cf equation (9) where di#O) .  Thus h( t )  in equation (4) is also non- 
polynomial. Nevertheless, in the harmonic limit g + 0 equation (2) should reduce to 
some eigenfunction of the harmonic oscillator in order that the procedure proposed is 
consistent. Hence we conclude that the only possibility remaining is h( t )  = 0 for all t, 
which implies that equation ( 5 )  for g = 0 should give f(z) = 0 for all z as the solution 
compatible with the existence of the integral in equation (4). Taking into account that 
for g = 0 and in order to obtain the harmonic oscillator equation from equation (1) the 
energy has to be positive, it can be easily seen that equation ( 5 )  doe0 indad givef(r) = 0 
for all z, the other solution being discarded since it makes the integral in equation (4) 
divergent at z = 0. This situation suggests that in any attempt to obtain the solutions (4) 
by means of some expansion in harmonic oscillator fundions all the e m o n  
coefficients vanish for g = 0. Therefore we have the previously announced difference 
withFlessas (1981) where the exact solutions of equation (l), as they are finite linear 
combinations of oscillator eigenfunetions, reduce for g = 0 to an eigenfundion of the 
harmonic oscillator. 

To sum up we have given exact solutions and eigenvalues for equation (1) and 
demonstrated their applicability. Comparison with relevant previous works has been 
done and the differences have been pointed out. 

1 1/2 f cmr(-m-T,t)-- h(t)  = exp(t>(& 

I wish to thank D Sutherland and R R Whitehead for valuable comments. 
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